4 research outputs found

    Single feed circularly polarized crescent-cut and extended corner square microstrip antennas for wireless biotelemetry

    Get PDF
    In this paper, the development of two novel circularly polarized microstrip antennas is thoroughly explained. These antennas are fed by coaxial feeding technique. One of the primary objectives of the proposed work is to tune the antennas to work in ISM band. This frequency band refers to the internationally recognized radio frequency bandwidth which is to be used explicitly for Industrial, Scientific, and Medical applications. Therefore, these antennas would be suitable to use in the field of wireless biotelemetry. Two new antenna design techniques have been introduced to produce circular polarization, and details of these schemes are described. The proposed microstrip antennas are designed and simulated on Advanced Design System (ADS) software. The return loss of the proposed crescent-cut antenna is -19.3 dB at the operating frequency. The extended corner antenna has the return loss of -29.3 dB at the tuned frequency. The simulation results are also presented and discussed

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Customisable arithmetic hardware designs

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore